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Table 1. Comparative vahtes of  residuals Rl and R2 in least-squares refinements of  structures from neutron-diffraction data 

~-D-Glucose 
(Brown & Levy, 1965) 

Potassium hydrogen 
chloromaleate 
(Ellison & Levy, 1965) 

K2NbF7 
(Brown & Walker, 1966) 

RI R2 o- Remarks 
0.060 0.059 1.097 37 of 1656 data omitted 

0.123 0.092 1.015 4 of 1959 data omitted 

0.090 

0.109 

0.087 

f ,  = [IFI~ -IFI~ ]/IFIo k 

and to rewrite R~ in the form 

Z fklFIko 
R~-- S IFl--------~ " (3) 

This expression emphasizes that R~ is the weighted average 
value of the absolute fractional discrepancy, each individual 
value being weighted by the corresponding IFIg. Making 
use of the approximation f l  ~-f2/2, valid fo r f l  and f2 values 
in the range of interest, one can write the specific forms for 
R1 and R2 as follows: 

R~ = ½ S, f21FIo/~ r IFIo (4) 

R2 = 2~f21FI2/S, IFI 2 . (5) 

It is well known that for X-ray film data the fractional 
observational errors are usually approximately constant 
over a wide range of IFIo values above a minimum value. 
From (4) and (5) it follows that the relation R~ ~-R2/2 
should be expected to hold, in agreement with the usual 
finding. 

In the typical set of neutron-diffraction data, obtained 
by counter techniques, f2 is by no means constant. Rather, 
it varies over a very wide range, usually from about 0-03 
for the strongest reflections to the order of unity for the 
weakest observable reflections. In comparison with (4), 
the expression (5) weights the smaller fractional discrep- 
ancies associated with the larger IFIo values much more 
heavily than the larger discrepancies associated with the 
smaller IFIo values. Given the usual distribution of IFIo 
values in a set of data, it is understandable, therefore, that 
R1 may equal or exceed R2. 

For X-ray data recorded by counter techniques higher 
precision can easily be achieved in measuring the weaker 
reflections, because of the better resolution against back- 
ground allowed by the higher intensity of radiation in X-ray 
beams. Therefore the range of values off2 is usually not so 
large as it is for neutron data. It follows that one should 
expect for such data values of RI/R2 intermediate between 
those characteristic of X-ray film data and neutron data. The 

0.081 

0.103 

0.070 

(2) 

1.20 All 1355 data, no extinction 
corrections 

1.13 112 data omitted because of 
extinction 

1.11 All 1355 data, corrected for 
extinction 

precise value in a given case will depend on the distribution 
of the fractional errors in the data, which will be determined 
by the details of the recording scheme and by the effects of 
any systematic errors that may be present. 

By systematic analysis of the discrepancies, one may 
detect in the last stages of a structure refinement with 
neutron data the presence of extinction errors which are 
small in magnitude but which may affect fifty or a hundred 
data of the strongest reflections. The R~- values computed 
when these data are included in the refinements are always 
lower than those computed when the data are omitted, 
though the reverse is true for the corresponding values of 
the more significant quantity a, the standard deviation of 
an observation of unit weight.* At first sight this finding 
may seem anomalous, but it is readily understood by ref- 
erence to the expression (3) for Rx. When the data in error 
are included, their fractional discrepancies are reduced by 
a compensating adjustment of the scale factor on the ob- 
servations, so that the discrepancies become small relative 
to those of many of the weak reflections. Then the large 
weights given these data by equation (3) ensure a value of 
Re that is misleadingly low. In fact, the resulting Rk value 
may even be quite close to the value calculated after refine- 
ment on data corrected for extinction. 
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* This quantity is defined by the equation 
[ Z, w(lFlo2--lFlc2)2 ] ~ 

° =  ;~ --A 

where the weight w is the reciprocal of the variance of an 
observation IFIo 2, n is the number of observations, and p is 
the number of parameters fitted to the data set. See, e.g. 
Hamilton (1964). 
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In a study of line broadening from gray irons and steels, analysis of Warren & Averbach (1950). These discrepancies 
Hauk & Hummel (1956) obtained vastly differing results led others (Willets, 1965) to suggest alternate methods of 
for integral breadth analyses and the Fourier transform line profile analysis in order to separate the effects of small 
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crystallite size from those of lattice distortions. Another 
integral breadth analysis (Bonart, Hosemann & McCul- 
lough, 1963) is based on paracrystalline theory and might 
be expected to yield still another set of values for the size, 
and especially, the distortion parameters. The purpose of 
this note is to show that numerical differences in the param- 
eters obtained from the different methods of analysis arise 
naturally and need not be construed as evidence that a 
given method is more applicable than others. 

For this development: (1) we treat size terms and dis- 
tortion terms separately, even though they interact to a 
considerable extent when both small crystallite size and 
lattice distortion are present in the experiment; (2) we 
ignore any experimental advantages (or disadvantages) of 
a given method of size-distortion separation; and (3) we 
assume that an accurate correction for instrumental broad- 
ening has been made. 

Consider first the case in which line broadening arises 
solely from a distribution, n(i), of small crystallite sizes, 
L~ (=dhk~" i). In the following, s is the diffraction space 
variable (so= 1/dhkz). For the hkl  reflection, each size L~ 
produces a profile of the type: 

I(s, i) = n( i )A, f (s ,  i) , (1) 

where A, is a scaling factor dependent on the nature of 
f ( s ,  i), and f ( s ,  i) is so normalized that f(so,  i )=  1. The total 
(hkl) intensity from all sizes L, is: 

l(s)  = Z n( i )A, f (s ,  i) , (2) 
i 

and the integral breadth of the total profile is: 

Z n ( i )Aq  f ( s ,  i)ds 
f l (s)ds i 

b=  I(so) - 27 n(i)A,  ' (3) 
i 

where the integration is taken over the (hkl) profile only. 
The integral breadth of the ith profile is: 

b, = f f ( s ,  i)ds = 1/L, , (4) 

which is equivalent to the Scherrer formulation relating 
crystallite size and integral breadth (Klug & Alexander, 
1954). Equation (3) becomes: 

Z n(i)A,b,  
i 

b =  Z n(i)A~ " (5) 
i 

The intensity in the ith profile must be proportional to the 
product of the size of the ith crystallites, L,, and their num- 
ber, n(i). Therefore, 

f l (s ,  i)ds = kLm( i )  = n(i)A~ f f ( s ,  i)ds = n(i)A~b, (6) 

where k is the proportionality constant. If we assume that 
the f ( s , i )  all have the same functional form, we obtain 
from equations (4), (5) and (6): 

Z kLm( i )  Z Lm( i )  
i i 1 

b=  N kLm( i ) /b ,  - Z L2n(i) - ( L ~  ' (7) 
i 

where (L,) is a 'weight-average' (i.e. size-average) dimen- 
sion. 

In contrast to this result, the size obtained through the 
Warren-Averbach technique is a 'number-average' dimen- 
sion (Warren & Averbach, 1950)" 

X Lm(i )  
L i =  i 

Z n(i) " (8) 
i 

It is apparent that crystallite dimensions obtained by an 
integral breadth method are always larger than (or equal 
to) those obtained by the Fourier transform technique; the 
two size averages are complementary, rather than com- 
peting, parameters. 

Next we consider the case in which lattice distortions are 
the only cause of broadening and compare the integral 
breadths defined by several theories of distortion broaden- 
ing. The appropriate integral breadths are" 

(1) Wilson's method (Wilson, 1949): 

b (A -a) = 2eso, (9) 

where e = ~ d / d  represents the (somewhat loosely defined) 
extent of the lattice distortions. 

(2) Paracrystalline method (Bonart, Hosemann & Mc- 
Cullough, 1963): 

b (/~-1) = (1/2dh~0[1 -- exp ( -- 2rc2mZg~)], (10) 

where dh~z is the interplanar spacing of interest, rn is the 
order of reflection, and gi =dl /d ,  where dx is the standard 
deviation of Hi(x), the probability function describing the 
paracrystalline lattice in the direction normal to (hkl). 
When the product 2~zEm2g2 is sufficiently small, equation 
(10) reduces to" 

b (]k-l) = (1/2dh~z)(2n2mEg2a) = nEmEg~/dh~z. (10a) 

(3) Fourier transform methods (Warren & Averbach, 
1950): 

+ o o  

b (/~-1)= 1/ 27 F ( t ) ,  
t ~ - - o O  

where F( t )  is the Fourier transform of the observed profile, 
f ( s ) ,  and is given by: 

F( t )  = exp ( - 2~2So2t2~), 

where ~ is the mean square value of the lattice distortion 
over the domain, t(/~). 

Thus: 

i 
-I- oo 

b ( • - l ) = l /  _ooexp ( - 2 n 2 ~ t 2 4 ) d t = s o ~ 2 - ~  ~ .  (11) 

Note that ~ is the r.m.s, value of e~, averaged over all t. 
If  the lattice distortions are microstrains, equations (9) and 
(11) indicate that: 

e - 1.25 V~.  (12) 

We note from equations (9), (10), and (11) that the rela- 
tionships between integral breadth and order of reflection 
are not the same for the various treatments. Paracrystalline 
theory requires that the integral breadth be proportional to 
the square of the order of reflection, while both Wilson's 
method and the Fourier transform method require that the 
integral breadth be proportional to the first power of the 
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order of reflection. Clearly at least three orders of reflection 
are required in order to decide which of the two types of 
distortion broadening theory is applicable to the data. 

Thus for size broadening, two quite different (but pre- 
cisely defined) parameters may be obtained from integral 
breadth methods and from the Fourier transform method. 
When lattice distortions are the only cause of broadening, 
different results, which are not all compatible, will be ob- 
tained from the different analyses. Clearly the situation is 
further complicated by the simultaneous presence of both 
size and distortion broadening. 
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The crystal structure of terpyridylzinc chloride has been 
reported by Corbridge & Cox (1956). The monoclinic space 
group of the form investigated was P21/a with a =  16.21, 
b=8"25, c=  10"97/~ and fl=93.5 °. Each zinc atom was 
shown to be at the centre of a distorted trigonal bipyram- 
idal group of three nitrogen and two chlorine atoms. 
The published atomic coordinates, particularly those of 
carbon and nitrogen atoms, were however of low precision, 
having been determined directly from three-dimensional 
electron density maps. The exact configuration of the ter- 
pyridyl ligand was therefore uncertain. In conjunction with 
a structure analysis of the tin(IV) complex [Sn(CH3)2C12]2. 
terpyridyl (Fergusson, Roper & Wilkins, 1965) we wished 
to know these details and therefore have carried out a 
least-squares refinement of the data of Corbridge & Cox. 

Refinement commenced with the published atomic co- 
ordinates and, of the 554 listed structure factors, all were 
used except one thought to be affected by extinction and 
four others for which Fobs was indicated as uncertain. The 
block-diagonal least-squares procedure was used (the pro- 
gram being that written for the IBM 1620 computer by 
G.A.  Mair) and each atom was assigned an independent 

Table 1. Atomic coordinates and isotropic thermal parameters 

x/a y/b z/c B 
Zn 0.1181 0.0955 0.2171 2.09 A2 
Cl(1) 0.2383 0.0239 0.1389 2.90 
C1(2) 0-1318 0.3226 0.3342 2-03 
N(1) 0.1169 -0.101 0.359 1.0 
N(2) - 0.0059 0.027 0-224 1.5 
N(3) 0.0520 0.203 0.058 1.4 
C(1) 0.1893 -0.162 0.415 2.5 
C(2) 0.1805 -0.286 0.505 2.8 
C(3) 0.1099 -0.334 0.543 4.0 
C(4) 0.0321 - 0.260 0.480 2.0 
C(5) 0.0468 -0-147 0.391 1.7 
C(6) - 0.0291 - 0.070 0.325 1.0 
C(7) -0.1118 -0.094 0.343 1.5 
C(8) -0.1699 -0.016 0.266 2.3 
C(9) -0.1504 0.089 0.175 2.1 
C(10) -0.0647 0.101 0.155 1.5 
C(11) - 0.0325 0-200 0-060 4-1 
C(12) -0.0834 0.279 -0.030 2.1 
C(13) -0-0466 0.360 -0.122 2.1 
C(14) -0.0421 0.372 -0.120 2.4 
C(15) 0.0921 0.290 - 0.026 2.6 

isotropic thermal parameter. Least-squares weights were as 
follows: l /W= 10/Fobs for Fobs> 10; l/W=Fobs/lO for Fobs 
< 10. Unobserved reflexions were assigned a value of 0.6, 

all these numbers referring to the original scale. Serf-con- 
sistent field model scattering factors were used for all atoms 
except zinc, for which anomalous dispersion 'in phase' cor- 
rections were applied to the Thomas-Fermi-Dirac  scattering 
factors (International Tables for X-ray Crystallography, 
1962). 

After two preliminary refinement cycles during which 
only zinc and chlorine positions and an overall scale factor 
were varied, seven further cycles were computed during 
which all positional and thermal parameters were allowed 
to vary. During this refinement, which was aided by an 
acceleration procedure (Hodgson & Rollett, 1963), the 
discrepancy index R decreased from 0-24 to 0.14. The final 

Table 2. Interatomic distances and angles 
Zn-Cl(l) 2-25/~ tr=0.01 A (2-28 A)* 
Zn-CI(2) 2.27 0.01 (2-29) 
Zn-N(1) 2.24 0.04 (2.19) 
Zn-N(2) 2.09 0.04 (2.11) 
Zn-N(3) 2.18 0.04 (2.34) 

CI(1)ZnCI(2) 112 ° (111 °) 
CI(1)ZnN(1) 97 
CI(1)ZnN(2) 143 
CI(1)ZnN(3) 101 
CI(2)ZnN(1) 102 
CI(2)ZnN(2) 105 
CI(2)ZnN(3) 98 
N(1)ZnN(2) 74 (79) 
N(1)ZnN(3) 145 
N(2)ZnN(3) 73 (72) 

N(1)C(1) 1-38/~ N(3)C(15) 1.36/~ 
N(1)C(5) 1.27 N(3)C(11) 1.37 
N(2)C(6) 1.43 N(2)C(10) 1.32 

C(1)C(2) 1.44 C(14)C(15) 1.44 
C(2)C(3) 1.30 C(13)C(14) 1.44 
C(3)C(4) 1.53 C(12)C(13) 1.38 
C(4)C(5) 1.37 C(11)C(12) 1-41 
C(6)C(7) 1.38 C(9)C(10) 1-42 
C(7)C(8) 1.38 C(8)C(9) 1.37 
C(5)C(6) 1-53 C(10)C(11) 1.45 

* Values in parenthesis are those reported by Corbridge & 
Cox (1956). 


